Generalized functions - HW 2

November 10, 2015

Question 1

We first prove a small auxiliary claim. A topological vector space is a regular space.
To show this claim it will be enough to show that for any closed set A such that 0 ¢ A there
exists two disjoint open sets Uy, U such that 0 € Uy, A C Us.

Indeed, let A be such a set and denote by W its open complement. Then W is a neighbor-
hood of 0 and by exercise 2 there exists a balanced open set U C W, and we may also assume
that U + U C W.

Now, define U; = U and Uy = A + U. Clearly U is open, and Uy = |J U + a is open
a€A
as well. To see that U; N Uy = () consider x € U; N Uy, then 2 = u; and z = a + uy for some

a € A,ui,up € U. Butthena =u; —us € W — W C U = A€, contradiction.

So, by Urysohn’s metrization theorem (ii)) = (1), while (i) = (i1) trivially. Since each open
neighborhood of 0 contains an open balanced neighborhood of 0, and there is a correspondence
between open balanced neighborhood of 0 to semi-norms (ii) = (iii). Finally, a countable
collection of semi-norms implies a countable basis of open balanced sets around 0 and (iii)
= (ii).

Question 2

Let 0 € U be open, since scalar multiplication is continuous there exists € > 0 such that for
every bounded open V' C U we have D.V C U, where D, = {z € F||z| < €}. Otherwise we
could define the sequence {v, } to be elements of V' for which £v,, ¢ U which is a contradiction.
Clearly D.V is balanced and the claim follows.

Question 3

Homogeneity and positivity are immediate from the definition of No. To see the triangle in-
equality, let u and v be two Vectors such that u € «;C and v € ayC for ay,alphay € FT.
Since C'is balanced it holds that -C' C C and convexity of C'yields -*—v+ —~—u € C.

Thus, u + v € (a1 + a3)C and Nc(u +v) < a1 + 9. Since this is true for any such aq, as it
is also true for their infimums which concludes the proof.




Question 4

We first observe that if a topological vector space admits a continuous norm then the open con-
vex set define as its unit ball does not contain a line. So, it will be enough to find a locally
convex topological vector space such that every non empty open set contains a line.

Consider R“ with the product topology. It is Hausdorf as a product of Hausdorf spaces, and
addition and multiplication by scalar are continuous since the projections are continuous. By
the definition of the product topology, for any open () # U € RY there exists j such that
if 7; is the projection on the j’th coordinate then 7,;(U) = R. In particular if a € U then
{z € R¥|m;(x) = m;(a),i # j} is a line which is contained in U.

Question 5

a. Let ¢ € W*. Zorn’s lemma allows us to consider a basis for W, (v;);c; and the extend it to
a basis for V, (v;);e;r where I C I'. We now define @ € V* on the basis in the following way:
o(v;) = @(v;) if ¢ € I and 0 otherwise. Clearly, ¢ [y = ¢ and the restriction map is onto.

b. Was solved in the tirgul (Exercise 2.12.).

Question 6

As seen in class, we may define the topology on C*°(R) with the semi-norms ||-[|,, , defined as

[ £l = sup{|f™(z)||z € [k, k]}. Thus, it is a locally convex space, and since it is defined
by a countable set of norms it is also first countable (by question 1). So, completeness is equiv-
alent to sequential completeness in this case. It will suffice to show that if (f,,) is a Cauchy
sequence then ( f,,,) converges to some f € C*°(R).

Let (f,,) be such a Cauchy sequence. So, for every n,k € N, (f,,) is Cauchy with respect
to |||l,, - So, on each compact K all the derivatives of f form a Cauchy sequence with respect

to the uniform norm and thus each ( fy(,? )) converges uniformly to some f,,. A popular theorem

from calculus 2 (or 1, depends where you’re from) shows us that f,, must in fact equal fé”) and
(fm) — fo inside K. The claim then follows by compact exhaustion of R.

Question 7

We have seen in class that the topology on C°(RR) is the co-limit topology of Il(m]lR C*(K), K
C

is compact. So U C C°(R) is open iff its ’restriction’ to C*°(K) is open for every compact K.

Now, suppose (f,) — f in this topology, W.L.O.G. we may assume supp(f) C [—1, 1] (we
can always re-parametrize f). We will show that | supp(f,,) is compact. Otherwise, for each

k € N there exists zy ¢ [—k, k| and f,,, such that |f,, (xx)] = ap > 0. If we define the open
set U = {g : |g(xx)| < ag,Vk € N} then clearly f € U but for any N € N there exists
ni > N such that f,, ¢ U, thus f,, - f. To see that U is open, its enough to consider its
restriction to each compact C'*°(K’). But then we only have a finitely many xj in K. And



UNC®K)= N {g:lg9(@)] < ar} = [ 6 (-, ay). Since d,, is a continuous
kxpeK kxpeK
function, the pre-image of an open set is open.

So, if Ky = |Jsupp(f,) is compact we know that f,, converges to f inside K ; which im-

n
plies uniform convergence of all derivatives inside K’y and thus in R.

For the other direction, suppose | supp( f,,) Usupp(f) = K is compact and that all derivatives

of f,, converge uniformly to f. Let f € U be an open set. So U restricted to C*°(K ) is open.
Then, by definition f,, — f inside C*°(K). Thus, for almost all n, f,, € UNC>®(K;) C U
and f,, — n in the topology of C2°(R) as desired.



