
Generalized functions - HW 2

November 10, 2015

Question 1
We first prove a small auxiliary claim. A topological vector space is a regular space.
To show this claim it will be enough to show that for any closed set A such that 0 /∈ A there
exists two disjoint open sets U1, U2 such that 0 ∈ U1, A ⊂ U2.

Indeed, let A be such a set and denote by W its open complement. Then W is a neighbor-
hood of 0 and by exercise 2 there exists a balanced open set U ⊂ W , and we may also assume
that U + U ⊂ W .

Now, define U1 = U and U2 = A + U . Clearly U1 is open, and U2 =
⋃
a∈A

U + a is open

as well. To see that U1 ∩ U2 = ∅ consider x ∈ U1 ∩ U2, then z = u1 and z = a + u2 for some
a ∈ A, u1, u2 ∈ U . But then a = u1 − u2 ∈ W −W ⊂ U = Ac, contradiction.

So, by Urysohn’s metrization theorem (ii) =⇒ (i), while (i) =⇒ (ii) trivially. Since each open
neighborhood of 0 contains an open balanced neighborhood of 0, and there is a correspondence
between open balanced neighborhood of 0 to semi-norms (ii) =⇒ (iii). Finally, a countable
collection of semi-norms implies a countable basis of open balanced sets around 0 and (iii)
=⇒ (ii).

Question 2
Let 0 ∈ U be open, since scalar multiplication is continuous there exists ε > 0 such that for
every bounded open V ⊂ U we have DεV ⊂ U , where Dε = {x ∈ F ||x| < ε}. Otherwise we
could define the sequence {vn} to be elements of V for which 1

n
vn /∈ U which is a contradiction.

Clearly DεV is balanced and the claim follows.

Question 3
Homogeneity and positivity are immediate from the definition of NC . To see the triangle in-
equality, let u and v be two vectors such that u ∈ α1C and v ∈ α2C for α1, alpha2 ∈ F+.
Since C is balanced it holds that αi

α1+α2
C ⊂ C and convexity of C yields u

α1+α2
v+ v

α1+α2
u ∈ C.

Thus, u + v ∈ (α1 + α2)C and NC(u + v) ≤ α1 + α2. Since this is true for any such α1, α2 it
is also true for their infimums which concludes the proof.
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Question 4
We first observe that if a topological vector space admits a continuous norm then the open con-
vex set define as its unit ball does not contain a line. So, it will be enough to find a locally
convex topological vector space such that every non empty open set contains a line.

Consider Rω with the product topology. It is Hausdorf as a product of Hausdorf spaces, and
addition and multiplication by scalar are continuous since the projections are continuous. By
the definition of the product topology, for any open ∅ 6= U ∈ Rω there exists j such that
if πj is the projection on the j’th coordinate then πj(U) = R. In particular if a ∈ U then
{x ∈ Rω|πi(x) = πi(a), i 6= j} is a line which is contained in U .

Question 5
a. Let ϕ ∈ W ∗. Zorn’s lemma allows us to consider a basis for W , (vi)i∈I and the extend it to
a basis for V , (vi)i∈I′ where I ⊂ I ′. We now define ϕ̄ ∈ V ∗ on the basis in the following way:
ϕ̄(vi) = ϕ(vi) if i ∈ I and 0 otherwise. Clearly, ϕ̄ �W= ϕ and the restriction map is onto.

b. Was solved in the tirgul (Exercise 2.12.).

Question 6
As seen in class, we may define the topology on C∞(R) with the semi-norms ‖·‖n,k defined as
‖f‖n,k = sup{|f (n)(x)||x ∈ [−k, k]}. Thus, it is a locally convex space, and since it is defined
by a countable set of norms it is also first countable (by question 1). So, completeness is equiv-
alent to sequential completeness in this case. It will suffice to show that if (fm) is a Cauchy
sequence then (fm) converges to some f ∈ C∞(R).

Let (fm) be such a Cauchy sequence. So, for every n, k ∈ N, (fm) is Cauchy with respect
to ‖·‖n,k. So, on each compact K all the derivatives of f form a Cauchy sequence with respect

to the uniform norm and thus each (f
(n)
m ) converges uniformly to some fn. A popular theorem

from calculus 2 (or 1, depends where you’re from) shows us that fn must in fact equal f (n)
0 and

(fm)→ f0 inside K. The claim then follows by compact exhaustion of R.

Question 7
We have seen in class that the topology on C∞c (R) is the co-limit topology of lim

K⊂R
C∞(K), K

is compact. So U ⊂ C∞c (R) is open iff its ’restriction’ to C∞(K) is open for every compact K.

Now, suppose (fn) → f in this topology, W.L.O.G. we may assume supp(f) ⊂ [−1, 1] (we
can always re-parametrize f ). We will show that

⋃
n

supp(fn) is compact. Otherwise, for each

k ∈ N there exists xk /∈ [−k, k] and fnk
such that |fnk

(xk)| = αk > 0. If we define the open
set U = {g : |g(xk)| < αk,∀k ∈ N} then clearly f ∈ U but for any N ∈ N there exists
nk > N such that fnk

/∈ U , thus fn 9 f . To see that U is open, its enough to consider its
restriction to each compact C∞(K). But then we only have a finitely many xk in K. And
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U ∩ C∞(K) =
⋂

k:xk∈K
{g : |g(xk)| < αk} =

⋂
k:xk∈K

δ−1xk (−αk, αk). Since δxk is a continuous

function, the pre-image of an open set is open.

So, if Kf =
⋃
n

supp(fn) is compact we know that fn converges to f inside Kf which im-

plies uniform convergence of all derivatives inside Kf and thus in R.

For the other direction, suppose
⋃
n

supp(fn)∪ supp(f) = Kf is compact and that all derivatives

of fn converge uniformly to f . Let f ∈ U be an open set. So U restricted to C∞(Kf ) is open.
Then, by definition fn → f inside C∞(Kf ). Thus, for almost all n, fn ∈ U ∩ C∞(Kf ) ⊂ U
and fn → n in the topology of C∞c (R) as desired.
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